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Abstract. Recent precise experimental results of neutron elastic and inelastic scattering in
simple fluids, like noble gases in various density ranges, are briefly summarized. The comparison
of these results with available theoretical calculations and the relevance of this experimental
method, with the present state of the art, for the study of the microscopic properties of these
systems are discussed.

1. Introduction

The study of the microscopic properties and of their connection with macroscopic properties
of simple fluids made of closed-electronic-shell atoms, like noble gases, is of interest not
only in itself but also because these systems are models which can be studied in detail
with a good starting knowledge of the pair atomic interaction. Neutron elastic and inelastic
scattering is one of the most interesting experimental tools for the determination of the
microscopic structure and dynamics of fluids and it has been applied for a long time,
especially to dense fluids like liquids [1, 2].

However, in the case of the structural studies, which are usually performed by deriving
the static structure factorS(k) from the experimental angular distribution of the neutron
diffraction cross section, it has been thought that only minor details of theS(k) are connected
to the attractive microscopic interaction mechanism in the fluid while the excluded-volume
effect induced by the step-like nature of the repulsive potential dominates [1]. This fact,
therefore, if true to a high degree of accuracy, would lead to a good representation of real
S(k) even with hard-sphere-model potentials, despite the fact that the attractive part of the
microscopic interaction certainly plays a role in determining the properties of the fluid.

Nevertheless, refined models for the pair interaction of closed-electronic-shell atoms,
derived from various physical properties of single pairs, are available [3] and also the theory
which connects the microscopic potential interaction with the structure, represented by the
pair distribution functiong(r) in the fluid at any density, has been brought up to include
the effect of the irreducible long-range three-body interaction [4]. Moreover, computer
simulation methods are now able to investigate the behaviour of microscopic correlations,
both static and dynamic, in a very large number of thermodynamic states and in a very
large (k, ω) domain, giving the possibility of performing calculations with model potentials
to compare with experimental results.
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Present neutron scattering instrumentation and data analysis treatment have also reached
a high level of accuracy for the structural experiments and new inelastic instruments of high
resolution are now available. Therefore it seems to be right to undertake a systematic study
of the connection between the microscopic interaction in simple systems and the structural
and dynamical properties in order to establish this connection at the level of the present
state of the art for theory and neutron scattering experiments.

Here we will briefly report on a series of recent experiments, performed in noble gases
both for structural and for dynamical studies, and on the comparison of the experimental
results with available theories, in order to clarify the current possibilities. We consider the
present state of the art for the determination of the static structure factorS(k) in simple
fluids, measurements ofS(k) with an absolute precision of the order of 0.5% and a relative
statistical accuracy in the range 0.1–0.01%, whereas the best accuracy for the dynamical
structure factorS(k, ω) is of the order of few per cent. We will discuss (i) the static structure
factor S(k) at low density as determined by normal diffraction, (ii) the small-k behaviour
of S(k) at low density, (iii) the static structure factor in dense fluids, (iv) the low-density
S(k, ω) at small angles and (v) the small angleS(k, ω) in moderately dense gases. Let us
first give some theoretical background for the structural and dynamic properties.

2. Structural properties

In the theory of simple fluids, the static structure factorS(k) and the Fourier transformc(k)

of the direct correlation functionc(r) are defined by [1]

S(k) = 1 + n

∫
dr exp(−ik · r)(g(r) − 1) (1)

c(k) =
∫

dr exp(−ik · r)c(r) (2)

whereg(r) is the pair correlation function andc(r) is given by the Ornstein–Zernike relation

h(r) = c(r) + n

∫
dr′c(r ′)h(|r − r′|) (3)

with

h(r) = g(r) − 1. (4)

S(k) is the experimentally accessible quantity andc(k) can be derived fromS(k) by using
the relation

c(k) = (S(k) − 1)/nS(k) (5)

obtained from equations (1)–(4).c(r) and consequentlyc(k) have an important role in
the theory of fluids and are a useful representation of correlations because they reflect the
properties of the interatomic interaction at intermediate and large distances more directly
than doesg(r).

Here we will consider only classical systems. Theg(r) and c(r) are functionals of
the interatomic interactionU(r1, . . . , rN) which we will assume to be represented by the
cluster expansion

U(r1, . . . , rN) =
∑
i<j

U2(rij ) +
∑

i<j<l

U3(ri,rj,rl) (6)

whereri is the position of theith atom,rij = |rj − ri | and we have neglected many-body
forces beyond the triplet level. HereU2 andU3 are the pair and triplet irreducible interaction
potentials respectively.
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In the low-density limitc(r) andc(k) can be given as series expansions with respect to
the densityn of the system so that

c(r) = c0(r) + nc1(r) + O(n2) (7)

c(k) = c0(k) + nc1(k) + O(n2) (8)

where forj = 0, 1

cj (k) =
∫

dr exp(−ik · r)cj (r) (9)

cj (r) = (2π)−3
∫

dr exp(ik · r)cj (k). (10)

It is easy to show that, for classical fluids,

c0(r) = exp(−βU2(r)) − 1 (11)

whereβ = 1/(kBT ) and T is the temperature of the system. Moreoverc1(r) is the term
which accounts for the three-body correlations, namely for the first deviation ofc(r) from
pure pair behaviour [5, 6].

From equation (9) it is immediately seen that

U2(r) = −KBT ln(c0(r) + 1). (12)

Therefore, from a measurement ofc0(k) over a wide range ofk values and by means of
equations (9) and (11) one can derive an experimental pair potential for the system under
consideration.

It is interesting also to discuss the long-range behaviour ofc(r) in connection with the
small-k behaviour of thec(k). In fluid systems the interaction law can be written retaining
only the pair and the triplet contributions, equation (6), and it has been demonstrated that,
under these conditions the asymptotic behaviour ofc(r), under approximating assumptions
within the MHNC theory, is given by [7]

c(r) ' −βU2(r) + C(r) for r → ∞ (13)

whereC(r) is the dressed three-particle vertex. When the dispersion term is the dominant
one in the long-range pair potential we have

U2(r)r→∞ ' −C6/r6. (14)

Moreover, if the irreducible three-body interaction is assumed to be of the triple-dipole
Axilrod–Teller (AT) form [8] it can be demonstrated [9, 7] that we can write

C(r)r→∞ ' −(8π/3)βnν/r6. (15)

Hereν is the strength of the AT potential.
By using expressions (12)–(14) and asymptotic Fourier analysis it can be shown that

the small-k expansion ofc(k) is given by [10, 7]

c(k)k→0 ' c(0) + c2k
2 + c3|k|3 (16)

where the|k|3 term is due to ther−6 two- and three-body potential tails in direct space and
the c3 coefficient is given by

c3 = (π2/12)[C6 − 8πnν/3]kBT . (17)

The previous expression indicates that, if a linear density-dependence at small densities is
found inc3 this demonstrates that the Axilrod–Teller potential can be correct, while, together
with C6, a measure of theν coefficient can be extracted from the density-dependence.
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In the case of dense systems the theory is performed by means of integral equations,
the most refined one is the triplet MHNC, which encloses the effect of the three-body
potential [4]. The fundamental relation between correlations and interactions for the triplet
MHNC is the expression

g(r) = exp(−βU2(r) + h(r) − c(r) + C(r) + EHS(r)) (18)

where C(r) is the dressed three-particle vertex andEHS(r) is the hard-sphere bridge
function. We have also

C(r) = n

∫
dr3g(r13)g(r23)[exp(−βU3(r1, r2, r3)) − 1]. (19)

Equations (3), (18) and (19) form a closed set of equations forg(r), which enclose the
effects of two- and three-body forces, and which can be solved with a suitable iterative
method.

3. Dynamic properties

Differently from the case of structure, a detailed theory of dynamical properties in simple
fluids does not exist up to now; nevertheless, several models have been employed in order
to account for these properties in an approximate way and to compare experimental results
with theoretical predictions. Here we will give two examples, one for low and one for high
density, relevant for discussing the small-k behaviour ofS(k, ω).

The density expansion ofS(k, ω), similarly to the case ofS(k), can be usefully discussed
if we restrict ourselves to considering(k, ω) ranges within which effects due to long-time
tails in the correlation functions, from whichS(k, ω) itself originates, are negligible within
the experimental uncertainties [11, 12]. In this context we must avoid in our study the region
in (k, ω) space within which collective modes are manifest in the spectrum of the density
fluctuations in the system. For this purpose we consider that we must fulfil one of the two
requirementsk � 1/l or ω � 1/τ wherel andτ are the mean free path and the free time
between collision in the system respectively.

When one of the two previous conditions is fulfilled then, similarly to what it is done
for S(k), alsoS(k, ω) can be expanded in a series with respect to the density of the system
as

S(k, ω)/S(k) = S(0)(k, ω) + nS(1)(k, ω) + O(n2) (20)

whereS(0)(k, ω) is the free-gas contribution and equals the dynamic structure factor for non-
interacting particles, while the linear termnS(1)(k, ω) represents the contribution due to the
interaction and dynamics of pairs. The higher order terms in equation (20) are negligible
for nσ 3 � 1, whereσ is the size of the particles.

Up to now the explicit calculation ofS(1)(k, ω) has been performed for a hard-sphere
fluid only by Kamgar-Parsiet al [11]. These authors use an expansion equivalent to (20) at
low density (V0/V < 0.1 which is equivalent tonσ 3 < 0.14, whereV0 is the close-packing
volume). This expansion is in powers of 1/(kl0), wherel1 = (nπσ 2√2)−1 is the Boltzmann
free path, and is given by

S(k, ω)/S(k) = 2t0/(πkl0)[exp(−4ω∗2/π) + s11(ω
∗)/(kl0) + O(kl0)

−2] (21)

wheret0 = l0[πM/(8kBT )]1/2 is the Boltzmann mean free time andM is the particle mass.
In this last expression the frequency-dependence appears only through the reduced variable
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Figure 1. Experimentalc(k, n) at variousk values (symbols) and weighted linear fits to the
data (lines).

Figure 2. c0(k) from extrapolation ofc(k, n) to n = 0 (symbols) and calculated from the pair
potential taken from [15] (line).

ω∗ = ωt0/(kl0). The first term in equation (21) is again the free-gas contribution, while
s11(ω

∗) is related toS(1)(k, ω) for hard spheres by

s11(ω
∗) = [kBT /(πM)]1/2(k/σ )2S(1)(k, ω). (22)

At higher density linearized hydrodynamics can be used to interpret the experimentalS(k, ω)

in the(k, ω) region within which collective modes are manifest in the spectrum of the density
fluctuations in the system.

In this case we can writeS(k, ω) as a sum of three Lorentzians [13], namely

S(k, ω) = (S(k)/π){A0zH/(ω2 + z2
H )} + AS [zS + (ω + ωS)b]/[(ω + ωS)

2 + z2
S ]

+AS [zS − (ω − ωS)b]/[(ω − ωS)
2 + z2

S ] (23)

where the quantitiesA0, AS, zH , zS, ωS and b can be given in terms of the specific heat
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Figure 3. Pair potentials from experiment (symbols) and from the literature [15].

Figure 4. Experimental results forλ(k) in argon atT = 138.75 K. The densities are, from
top to bottom: n = 1.51, 199 and 2.30 nm−3. The data forn = 1.99 and 1.51 nm−3 are
shifted upward by 0.005 and 0.01 respectively. Straight lines represent the results of the fitting
procedure.

ratio γ = Cp/Cv, the kinematic longitudinal viscosityν = (ηb + 4
3ηS)/(nM), ηS the shear

viscosity, ηb the bulk viscosity, the thermal diffusivitya = λ/(nCp) and cS the speed of
sound. For low enoughk such thatγ ak2 andνk2 are small compared tocSk equation (23)
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Figure 5. Details of theH(k) for krypton in the small–intermediate-k range: (a)T = 199 K,
n = 11.86 nm−3; (b) T = 169 K, n = 14.57 nm−3; and (c)T = 130 K, n = 16.83 nm−3.
The full curve is the result of the triplet MHNC equation with the Aziz pair interaction plus the
three-body AT term. The values atk = 0 are taken from the compressibility data.

reduces to the well-known Rayleigh–Brillouin triplet with

A0 = (γ − 1)/γ AS = 1/(2γ ) ωS = cSk

zH = ak2 zS = 0k2 (24)

where0 = [ν + (γ − 1)a]/2 is the sound damping factor.

4. The static structure factor S(k) at low density as determined by normal diffraction

From equations (7) and (10) it is clear that a precise measurement of the density behaviour
of c(k) and the consequent determination of the zero-density limitc0(k) give the possibility
of evaluating, by means of a simple Fourier transformation,c0(r) and then by equation (12)
of extracting an experimental pair potential. This is a possibility of direct experimental
determination of the pair potential between two atoms by means of a simple Fourier
transformation of diffraction data. The precision of this procedure depends on the accuracy
of the determination ofc0(k), but also very much on the range ofk within which c0(k) is
measured, the larger the range the higher the precision attainable for a given experimental
accuracy.
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Figure 6. Details ofH(k) in the large-k range: (a), (b) and (c) are as in figure 5.

The first experiment for the determination of the pair potential from neutron diffraction
measurements was performed in argon [14] with the diffractometer D4B at the ILL in
Grenoble. Figure 1 shows an example of the density behaviour ofc(k) at variousk values
for argon, at low density and temperatureT = 140 K, from which the linear density-
dependence of equation (8) is demonstrated. From this density behaviour thec0(k) is then
extracted in thek range 2.4 < k < 100 nm−1. Figure 2 shows the experimentalc0(k) of
argon atT = 140 K. From Fourier transformation ofc0(k) we can now determinec0(r) and
U2(r) using equation (12). Figure 3 shows the experimental potential extracted from the data
and compared with a model potential for argon given in [15]. The comparison is good and
demonstrates the power of the method, even though it is not completely satisfactory. Part
of the difference may be attributed to the lack of data at lowerk values and the consequent
impossibility of using also thek = 0 limit of c0(k) which can be precisely derived from
PV T data.

5. The small-k behaviour of c(k) at low density

In order to measure the small-k dependence ofc(k) at low density given by equation (16) an
experiment was performed on argon gas with the PAXE SANS diffractometer at the LLB,
Saclay [16]. From this experiment the|k|3 behaviour ofc(k) at low k was determined and
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Figure 7. The difference1S(k) for the Aziz pair interaction with the AT three-body potential
(full curve), for the LJ interaction (chain curve) and for the hard-sphere potential (broken curve).
The result for the Aziz interaction without the three-body term (points) is only shown in (a) up
to 20 nm−1. Thermodynamic states are as in figure 5.

the first measurement of the coefficientC6 of the London dispersion interaction in the argon
pair potential performed.

In order to display the|k|3-dependence of the experimentalcexp(k) it is more convenient
to refer to the quantityλ(k) defined by

λ(k) =
k→0

(c(k) − c(0))/k2 ∼ c2 + c3k. (25)

Figure 4 shows the experimental results for argon atT = 138.75 K for three different
densities; here the function is given by equation (16), wherec(0), c2 and c3 are the
coefficients derived from a least-squares fit performed onc(k) with the polynomial (16).
From figure 4 thek-dependence ofλ(k) and therefore the|k|3-dependence ofc(k) is
demonstrated. In this case no density-dependence of the experimentalc3 coefficient is
found; in particular, from the experimental value ofc3, the value ofC6 for argon can be
derived. This value isC6 = (5.54± 0.83) × 10−78 J m6 and compares very well with the
estimate given by Kumar and Meath [17],C6 = 6.16× 10−78 J m6.
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Figure 8. The density derivative ofH(k) for the Aziz pair interaction with (full curve) and
without the AT three-body term (broken curve), for the LJ interaction (chain curve) and from
experimental data (points). The thermodynamic states for (a), (b) and (c) are as in figure 5.

6. The static structure factor in dense fluids

We now turn to the discussion of some experimental results for theS(k) at high density in
krypton [18, 19]. These measurements were performed at several temperatures between the
triple point and the critical point and at several different densities in order to compare precise
experimentalS(k) with theoretical prediction. The theory to which we will refer, for normal
conditions far from the critical point, is the result of calculations based on the three-body
MHNC of equation (18) which givesg(r) starting from a model potential forU2 andU3.
These calculations were performed for three different pair potentials in order to distinguish
among them, namely the hard-spheres (HS), the Lennard-Jones (LJ) and the empirical pair
potential given in [20], for the three-body potential the Axilrod and Teller potential was used.
Figures 5 and 6 give the comparison forH(k) between the experimental results and the
calculations with the empirical pair potential for three different thermodynamic states; here
also thek = 0 compressibility limit is reported.H(k) is defined asH(k) = (S(k) − 1)/n.

The very high degree of agreement is better seen in the quantity1S(k) = Sexp(k) −
SMHNC(k) defined as the difference between experiment and calculation. Figure 7 gives
1S(k) for the various pair potentials with and without the three-body one.

Here it is shown that the result for the empirical Aziz potential is by far the best; in this
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Figure 9. Experimental (dots) and theoretical (full line)S(k) of Kr at T ∗ = 4.4 × 10−3 and
n = 7.25 nm−3.

case at the two highest temperatures1S(k) is of the order of 0.02 whereas atT = 130 K
it is 0.05, only atT = 199 K does the introduction of the three-body interaction give a
very slightly better agreement. At the two lower temperature and higher densities the effect
of U3 is appreciable only in the neighbourhood ofk = 0. For the LJ potential1S(k) is
typically 5–10 times larger than that for the empirical model potential and is particularly
large in the region of the first maximum. As expected the hard-sphereS(k) gives a rather
good description at the higher density, whereas, as we move to lower density the deviations
become significant throughout thek range.

Even more interesting is the comparison between theory and experiment for the density
derivative ofS(k). For convenience we will refer here to the density derivative ofH(k).
Figure 8 shows this derivative for three different thermodynamic states compared with
theoretical calculations. On comparing figures 7 and 8, we notice that the difference between
the two potentials in the case of the derivative is in the first peak region, ten times larger
than forS(k) itself, which makes the derivative more suitable for testing the potential form
in dense systems.

Comparison between experiments and theory can also be performed in the vicinity of
the critical point, namely for reduced temperaturesT ∗ = (T −Tc)/Tc of the order of 10−3–
10−2. This is done by using an integral equation theory different from the MHNC, which
is known not to converge near the critical point; this new theory, given in [21]. is the
hierarchical reference theory (HRT).

Figure 9 shows the comparison of the experimental and theoreticalS(k) of krypton at
T ∗ = 4.4 × 10−3 and densityn = 7.25 nm−3. The calculation is the result of the HRT
with the Aziz potential. The agreement is quite good also in the small-k region where the
critical divergence starts to show [22].

7. The low-densityS(k, ω) at small angles

In order to study the deviations from the free-gas behaviour in theS(k, ω), as represented
by equation (20), and the connection of these deviations with the microscopic interaction,
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Figure 10. The experimentalS(1)(k, ω) for argon at room temperature (symbols with error bar),
for MD calculations (dots) and for hard-sphere calculations (full line). Thek values in nm−1

are given on the upper right-hand side of each plot.

an experiment has been performed in argon gas at room temperature, at low density and
at low k values [23]. This experiment was realized by using the spectrometer IN5 with
small-angle detection at the ILL, Grenoble. The low-k values were chosen because, given
the density, the deviations are larger at smallerk. This can be understood simply by looking
at the small-k behaviour of theS(k).

The densities of the experiment were chosen such thatnσ 3 � 1, while thek range was
such that 0.3 < kl0 < 5. From the experimental density behaviour ofS(k, ω) thenS(1)(k, ω)

was obtained and compared with two theoretical predictions, the hard-sphere (HS) one [11]
and a molecular dynamics calculation performed with a LJ potential [24]. Figure 10 gives
this comparison and shows the clear disagreement with the HS prediction, with an increasing
deviation ask increases, whereas the comparison with the LJ result is much better, albeit
not satisfactory. This shows the importance of the true interaction potential in determining
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Figure 11. S(k, ω) at n = 5.04 nm−3: experiments (dots with error bars), linearized
hydrodynamics (broken line), three Lorentzians with fitted parameters (full line): (a)k =
0.50 nm−1, (b) k = 0.75 nm−1, (c) k = 1.00 nm−1 and (d)k = 1.25 nm−1.

Figure 12. S(k, ω) at n = 2.00 nm−3. Symbols andk values are as in figure 11.

the dynamics of the pair as should be expected, and the large sensitivity ofS(1)(k, ω) to the
details of the pair interaction.

8. The small-angleS(k, ω) in moderately dense gases

For gas densities andk ranges within whichkl0 < 1 the transition from kinetic to
hydrodynamic behaviour starts to show up in the fluid and collective excitations start to
determine the shape of theS(k, ω). The experimental demonstration of this statement was
possible with an experiment in argon at room temperature and at densities larger than those
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Figure 13. The four fitted parameters of the three-Lorentzian spectrum as functions ofk at
n = 5.04 nm−3 (left-hand side) and atn = 2.00 nm−3 (right-hand side). Experimental
results (symbols with error bars), MD calculation with the LJ potential (dots) and linearized
hydrodynamics (broken line).

in the previous case [25]. Also in this experiment the spectrometer IN5 with small-angle
detection was used [24]. The experiment was performed at the two number densities 2.00
and 5.04 nm−3 which means 0.15 < kl0 < 1.3 for thek range presently used.

Figures 11 and 12 give the experimentalS(k, ω) for the two densities at variousk values
compared to the three-Lorentzian equation, equation (23). Two cases are reported, one is for
the spectrum (23) with the parameters given by the linearized hydrodynamics, the second
is a simple least-squares fit of equation (23) with free parameters to the experimental data.
From figure 12 it is clear that linearized hydrodynamics does not take account of the spectra
at highk and at the lower density.

This is better seen in figure 13, in which the parameters of the fit to equation (23), namely
ωS, zS, zH and r = AS/A0 are given together with the predictions of hydrodynamics. In
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figure 13 also the results of a molecular dynamics (MD) calculation ofS(k, ω) for a LJ
potential are given [26].

From figure 13 it is clear that departure from hydrodynamic behaviour towards kinetic
behaviour has been demonstrated experimentally at the lower density and highestk values.
This is confirmed also by the model MD calculation.

9. Conclusions

We have briefly recalled some of the results of a series of neutron scattering experiments
in noble gases at various densities, both elastic and inelastic. From the comparison with
available theories we can conclude the following.

(i) Precise low-density measurements of the static structure factorS(k), in simple
classical fluids, as a function of the density, can give experimentally determined pair
potentials and information on the three-body contributions.

(ii) The study of the small-k dependence of thec(k) allows one to determine the
long-range potential, namely the London dispersion force, in atomic pairs as well as the
asymptotic behaviour of the three-body corrections.

(iii) Comparison between experiments and theoretical calculations for high-densityS(k)

in simple fluids shows that, depending on the thermodynamic state, approximately 95–98%
of the totalS(k) can be ascribed to the pair potential interaction, if real potentials are used,
and only a very small amount can be related to three-body effects, which show up better at
low k values and intermediate densities. Also 85–90% of the pair contribution should be
ascribed to the excluded volume effect, nevertheless 10–15% of theS(k) in dense fluids is
strictly related to the attractive part of the pair potential. Moreover, the density derivative
of the S(k), when available, is a quantity which is more suitable to study the connection
with the form of the microscopic interaction.

(iv) The study of the density expansion of theS(k, ω) at low enough density permits
one to derive the first dynamic correction to the free-gas behaviour in theS(k, ω) itself.
This correction is related to the dynamic of the pair in the system and reflects the details
of the real pair interaction potential.

(v) For sufficiently high densities neutron inelastic scattering at lowk allows one to
study the elementary excitations of the fluid in the hydrodynamic regime together with the
transition from the hydrodynamic to the kinetic behaviour.

References

[1] Hansen J P and McDonald I R 1986Theory of Simple Liquids(London: Academic)
[2] Egelstaff P A 1992An Introduction to the Liquid State(Oxford: Clarendon)
[3] Aziz R A 1984 Inert Gasesed M L Klein (Berlin: Springer) p 5
[4] Reatto L and Tau M 1987J. Chem. Phys.86 6474
[5] Teitsma A and Egelstaff P A 1980Phys. Rev.A 21 367
[6] Tau M, Reatto L, Magli R, Egelstaff P A and Barocchi F 1989J. Phys.: Condens. Matter1 7131
[7] Reatto L and Tau M 1992J. Phys.: Condens. Matter4 1
[8] Axilro d B M and Teller E 1943J. Chem. Phys.11 299
[9] Casanova G, Dulla R J, Jonah D A, Rowlinson J S and Sanville G 1970Mol. Phys.18 589

[10] Enderby J E, Gaskell T and March N H 1965Proc. Phys. Soc.85 217
[11] Kamgar-Parsi B, Cohen E G D and deSchepper I M 1987 Phys. Rev.A 35 4781
[12] Moraldi M, Celli M and Barocchi F 1989Phys. Rev.A 40 1116
[13] van Well A A and de Graaf L A 1985 Phys. Rev.A 32 2396
[14] Fredrikze H, van Tricht J B, van Well A A, Magli R, Chieux P and Barocchi F 1989Phys. Rev. Lett.62

2612



9126 F Barocchi et al

[15] Barker J A, Fisher R A and Watts R O 1971Mol. Phys.21 657
[16] Magli R, Barocchi F, Chieux P and Fontana R 1996Phys. Rev. Lett.77 846
[17] Kumar A and Meath W J 1985Mol. Phys.54 823
[18] Barocchi F, Chieux P, Magli R, Reatto L and Tau M 1993Phys. Rev. Lett.70 947
[19] Barocchi F, Chieux P, Magli R, Reatto L and Tau M 1993J. Phys.: Condens. Matter5 4299
[20] Aziz R A and Slaman M J 1986Mol. Phys.58 679
[21] Parola A and Reatto L 1995Adv. Phys.44 211
[22] Barocchi F, Chieux P, Fontana R, Magli R, Meroni A, Parola A and Reatto L 1996 to be published
[23] Verkerk P, Bafile U, Barocchi F, de Graaf L A, Suck J B and Mutka H 1991Phys. Rev. Lett.67 1262
[24] Bafile U, Barocchi F and Neumann M 1995Phys. Rev.E 51 3756
[25] Bafile U, Verkerk P, Barocchi F, de Graaf L A, Suck J B and Mutka H 1990Phys. Rev. Lett.65 2394
[26] Bafile U, Barocchi F, Neumann M and Verkerk P 1994J. Phys.: Condens. Matter6 A107


